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1. Time Series Data 
Up until this point, we have studied cross-sectional or panel data. With those types of data, we could look for 

relationships between variables by running regressions with many different people, firms, schools, etc. 

 

Time series data is different because it follows one unit over time. The variables involved are often aggregate 

measures, like GDP or unemployment. There are a couple of reasons to use aggregate data. One is when we 

actually want to learn more about an aggregate quantity (like GDP). The other is when we want to learn about 

individual-level behavior (e.g. demand for a product as a function of price) but only have access to more 

aggregated data. 

 

What makes time series data different from cross-sectional data? 

Cross-section Time series 

Requires a random sample. This is easy to define – 

just make sure to pick your observations randomly 

from the population. 

The sample might not seem "random" – after all, there 

is only one realization of GDP each quarter, so how 

could we sample randomly among GDP realizations? 

 

For practical purposes, this isn't a problem for us. You 

can think of GDP (or whatever the variable) as the 

outcome of a random ("stochastic") process. 

Observations are independent. Knowing the values of 

x and y for Observation 1 doesn't give us any 

information about the x and y of Observation 2. 

Observations are not independent. Knowing (for 

example) GDP and unemployment in Year 1 gives me 

a pretty good guess of what they'll be in Year 2 

because those variables change slowly over time. 

Usually have a lot of observations—often enough to 

stop worrying about the degrees of freedom when we 

do t-tests. 

Usually don't have many observations—just once a 

month, quarter, or year for some number of years. We 

must pay close attention to the degrees of freedom 

when performing a t-test (or look at the p-value from 

Stata). 

 

2. "Time" as an Omitted Variable 
The goal of a regression is often to find out if and by how much x affects y. The biggest obstacle to doing this is 

omitted variables bias. This is a huge problem with time series data because if x and y both have a time trend, 

we can confuse these trends for a relationship between x and y. 

 

Example: 

Do higher unemployment rates lower the number of car crashes? Fewer people are driving to work, so this 

could be true. 

 

We have data from 1983-1989 on unemployment rate and number of car crashes for one state (I don't know 

which). Here are both variables, plotted vs. time: 

  



Unemployment rate by month 

 

Number of accidents by month 

 
Over this time period in the 1980s, unemployment was falling. Number of accidents was rising. 

 

We want to regress accidents on unemployment: 
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We know that a regression is just fitting a line through a set of points, so let's guess what the regression will find 

by sketching a graph: 

 

 

 
 

What sign will ��� have? ____negative_____ 

 

Is  ��� likely to be statistically significant? _____yes—the relationship appears very strong_____ 

 

Are you convinced that it was unemployment causing accidents to change? ____no_______ 

 

Looking at the top graphs, what's the most important omitted variable in our regression? ____time_______ 
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3. Two Solutions for Time as an OV 
Solution 1: Include a variable for time 
Since time is the omitted variable (it "causes" accidents and is correlated with unemployment), we can just 

create a variable representing the month/quarter/year/etc. that we're in, and include that. This will control for a 

linear trend (a straight line) in the data. Letting � 
 �� �� �� �, we can write out the regression: 
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      Source |       SS       df       MS              Number of obs =      85 

-------------+------------------------------           F(  2,    82) =   86.68 

       Model |  1.0194e+09     2   509693963           Prob > F      =  0.0000 

    Residual |   482178602    82  5880226.85           R-squared     =  0.6789 

-------------+------------------------------           Adj R-squared =  0.6711 

       Total |  1.5016e+09    84    17875792           Root MSE      =  2424.9 

 

------------------------------------------------------------------------------ 

   accidents |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

        unem |  -1629.949   367.4759    -4.44   0.000    -2360.975   -898.9221 
           t |   30.68196   25.41529     1.21   0.231    -19.87715    81.24107 

       _cons |   53956.17   3541.389    15.24   0.000     46911.22    61001.12 

------------------------------------------------------------------------------ 
 

This might be a good method when we can eyeball the variables over time and see a constant, straight-line 

trend in the data. Otherwise… 

 

Solution 2: First-difference the data and run the regression on that data 
When we ask if x causes y, it's the same as asking if increasing x causes an increase (or decrease) in y. In other 

words, are �� and �� related?  

 

Defining �����	 
 ����	 � ����	�� and ����������	 
 ���������	 � ���������	��, we can graph them: 

 
Turning this graph into a regression: 
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      Source |       SS       df       MS              Number of obs =      85 

-------------+------------------------------           F(  1,    83) =   21.87 

       Model |   145825267     1   145825267           Prob > F      =  0.0000 

    Residual |   553314119    83  6666435.17           R-squared     =  0.2086 

-------------+------------------------------           Adj R-squared =  0.1990 

       Total |   699139387    84  8323087.94           Root MSE      =  2581.9 

 

------------------------------------------------------------------------------ 

  daccidents |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

       dunem |  -2374.307   507.6535    -4.68   0.000     -3384.01   -1364.605 

       _cons |  -61.30242   282.4886    -0.22   0.829    -623.1608     500.556 

------------------------------------------------------------------------------ 
 

Luckily, we can interpret the first-differenced results as if we were interpreting a "non-differenced" regression. 

How do we interpret  ���? 

 (Causal interpretation) Holding all else equal, a 1 percentage point increase in unemployment leads to 2,374 

less car accidents per month. 

 

("Predicted" interpretation) A 1 percentage point increase in unemployment decreases predicted accidents by 

2,374. 

 

 

4. Growth Rates 
Suppose we want to know how much a variable grows per period, on average. This is really simple: 
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where t is a number that goes up by 1 each time period (� 
 �� �� �� �). Then ��� is the average growth rate. We 

know this just by interpreting the coefficient as we always do: 

"A 1-period increase in time raises predicted y by ��� " �##$." So if time is measured in years, 

"Each year, y is predicted to increase by ��� " �##$." 

 

5. Seasonality 
Some variables are seasonal, i.e. they are always much higher in certain months than others. The seasonality 

itself can be interesting (are car accidents higher in December when people are traveling?). Or, it can be a 

nuisance that makes it hard to see the relationship we want to see. To control for seasonality, add dummy 

variables for all months (excluding one, of course). Example with linear trend (excluding January): 
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      Source |       SS       df       MS              Number of obs =      85 
-------------+------------------------------           F( 13,    71) =   21.62 

       Model |  1.1987e+09    13  92207481.4           Prob > F      =  0.0000 
    Residual |   302869270    71  4265764.36           R-squared     =  0.7983 

-------------+------------------------------           Adj R-squared =  0.7614 
       Total |  1.5016e+09    84    17875792           Root MSE      =  2065.4 

 
------------------------------------------------------------------------------ 

   accidents |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
        unem |  -1056.939   354.1083    -2.98   0.004    -1763.011   -350.8672 

           t |   61.78422   23.66835     2.61   0.011     14.59088    108.9776 

         feb |  -755.2448   1104.827    -0.68   0.496    -2958.207    1447.717 
         mar |   3375.545   1110.457     3.04   0.003     1161.357    5589.734 

         apr |   804.0844   1128.654     0.71   0.479    -1446.388    3054.557 
         may |   1295.495   1136.384     1.14   0.258      -970.39    3561.381 

         jun |   1094.341   1117.825     0.98   0.331    -1134.538     3323.22 
         jul |   2484.717   1105.367     2.25   0.028     280.6772    4688.757 

         aug |   2790.583   1121.445     2.49   0.015      554.486     5026.68 

         sep |   2029.618   1140.287     1.78   0.079    -244.0488    4303.285 
         oct |   3626.985   1148.213     3.16   0.002     1337.513    5916.458 

         nov |   3331.344   1143.326     2.91   0.005     1051.616    5611.072 
         dec |   4360.414    1103.09     3.95   0.000     2160.915    6559.912 

       _cons |   46640.28   3632.162    12.84   0.000     39397.95     53882.6 


